Formation of complex organics in the gas phase by sequential reactions of acetylene with the phenylium ion.

نویسندگان

  • Abdel-Rahman Soliman
  • Ahmed M Hamid
  • Paul O Momoh
  • M Samy El-Shall
  • Danielle Taylor
  • Lauren Gallagher
  • Samuel A Abrash
چکیده

In this paper, we report a study on the reactivity of the phenylium ion with acetylene, by measuring product yield as a function of pressure and temperature using mass-selected ion mobility mass spectrometry. The reactivity is dominated by a rapid sequential addition of acetylene to form covalently bonded C8H7(+) and C10H9(+) ions with an overall rate coefficient of 7-5 × 10(-10) cm(3) s(-1), indicating a reaction efficiency of nearly 50% at room temperature. The covalent bonding nature of the product ions is confirmed by high temperature studies where enhanced production of these ions is observed at temperatures as high as 660 K. DFT calculations at the UPBEPBE/6-31++G** level identify the C8H7(+) adduct as 2-phenyl-ethenylium ion, the most stable C8H7(+) isomer that maintains the phenylium ion structure. A small barrier of 1.6 kcal/mol is measured and attributed to the formation of the second adduct C10H9(+) containing a four-membered ring connected to the phenylium ion. Evidence for rearrangement of the C10H9(+) adduct to the protonated naphthalene structure at temperatures higher than 600 K is provided and suggests further reactions with acetylene with the elimination of an H atom and an H2 molecule to generate 1-naphthylacetylene or acenaphthylene cations. The high reactivity of the phenylium ion toward acetylene is in sharp contrast to the low reactivity of the benzene radical cation with a reaction efficiency of 10(-4)-10(-5), confirming that the first step in the cation ring growth mechanism is the loss of an aromatic H atom. The observed reactions can explain the formation of complex organics by gas phase ion-molecule reactions involving the phenylium ion and acetylene under a wide range of temperatures and pressures in astrochemical environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective Binding of Cyclic Nanopeptide with Halides and Ion Pairs; a DFT-D3 Study

In this article, theoretical studies on the selective complexation of the halide ions (F¯, Cl¯ and Br¯) and ion pairs (Na+F¯, Na+Cl¯ and Na+Br¯) with the cyclic nano-hexapeptide (CP) composed of L-proline have been performed in the gas phase. In order to calculate the dispersion interaction energies of the CP and ions, DFT-D3 calculations at the M05-2X-D3/6-31G(d) level was employed. Based on t...

متن کامل

Theoretical thermodynamic study on the interaction between Fe2+ ion and Pyrazole

The interaction of Fe2+ ion with Pyrazole was theoretically studied by Gussian 03, software at HF/(LanL2DZ+6-31G) and HF/ (LanL2DZ+6-31G (d)) levels in gas phase and solution. In this study acompartion between optimized structures of Pyrazole molecule in aspect of thermodynamicparameters such as enthalpy (H°), Gibbs free energy (G°) and entropy (S°) in presence of metallic ion(Fe2+), was perfor...

متن کامل

Compositional Modeling of Wax Formation in Petroleum Mixtures

Heavy organics deposition is a common problem in oil industry, especially in oil production, transportation and processing. Wax or solid paraffin series are examples of heavy organics that deposit. Precipitation and crystallization of wax causes major difficulties in different processes. Based on multi-solid theory, a basic model is modified in this paper for wax precipitation in different oils...

متن کامل

Electrochemical properties of iron oxide nanoparticles as an anode for Li-ion batteries

The synthesis of iron oxide nano-particles by direct thermal decomposition was studied. Simultaneous thermal analysis and Fourier transform infrared spectroscopy results confirmed the formation of iron-urea complex, and disclosed iron oxide formation mechanism. Calcination of the iron-urea complex at 200°C and 250°C for 2 hrs. resulted in the formation of maghemite along with hematite as a seco...

متن کامل

Thermodynamic Analysis of Light Olefins Production via Cracking of n-Hexane Using Gibbs Energy Minimization Approach and Analysis of Overall Reactions

Thermodynamic analysis of the cracking of hexane has been conducted by the Gibbs free energy minimization method and second law analysis of overall reactions. By-products have been divided into three groups of methane, alkynes and aromatics and their possible production paths have been discussed. Effect of operating conditions such as temperature and steam-to-hexane ratio on the cracking perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 116 36  شماره 

صفحات  -

تاریخ انتشار 2012